Making the chemical pretreatment process for Duplex (powder coating) on galvanized steel ready for the future in terms of quality, durability and sustainability

07-10-2022

A. STEGEMAN (AD CHEMICALS, NETHERLANDS)

K. BELJAARS (WECOAT, NETHERLANDS)

2 Phases

Phase 1: Replacing Chromium(VI)

- The main objective
- Process conditions
- Chemical pretreatment
- Results

Phase 2: Making the process future ready

- EU climate directives and sustainability goals of WeCoat
- Process optimalization; saving on energy, gas, maintenance, and waste costs

Phase 1: Replacing Chrome(VI)

Wecoat

The main objective

- Powdercoating HDG since 1980
- Switch to chromium(III) in 2016
- Chemical pretreatment with conversion layer and 2 layer powdercoating (DUPLEX)
- High end corrosion protection (C3/C4/C5-1/C5-M)

Tabelle 3: Beispiele für Pulverbeschichtung auf Stückverzinkung (Duplexsysteme)

Oberflächen Vorbereitung	Grundbeschichtung(en)			Deckbeschichtung(en)			Beschichtungssystem			Erwartete Schutzdauer (siehe ISO 12944-1) Korrosivitätskategorie													
	Binde-	te- Anzahl der so	Soll- schicht-	Binde- mittel	Anzahl der Schichten	Soll- schicht- dicke µm	Anzahl der Schichten	Gesamtsoll- schichtdicke µm	C2			C 3			C 4			C 5-I			C 5-M		
	mittel		dicke µm						к	м	ι	к	М	L	к	М	L	к	М	L	к	М	L
Sw	8	-			15	80	1	80	х	х	х	х	х	х	х								
ZnP	-		0.00		1	80	1	80	х	х	х	х	х	х	х	х							
Cr	1		0.775		1	80	1	80	х	х	х	х	x	х	х	х	x		-				
Sw			194	SP	2	60	2	120	х	х	х	х	х	х	х	х							
Sw		1	60		1	70	2	130	x	x	x	x	x	x	x	x		x					
ZnP	EP	- 1	60		1	70	2	130	x	x	х	x	x	x	х	х	x	х	x		x	x	
Cr		1	60		1	70	2	130	х	х	x	x	x	x	х	х	x	х	x		х	x	x
Cr	141	-	122	EP / SP	15	80	1	80	x	х	x	x	х	х	х	x	x	х			x		

Erläuterung:

Cr = Chromat, ZnP = Zinkphosphat, Sw = Sweepen

EP = Epoxidharz, SP = Polyesterharz, EP/SP = Epoxid-Polyesterharz

EP und EP/SP erfüllen nicht die Anforderungen an die UV Beständigkeit der Freibewitterung

K, M, L geben die zu erreichende Schutzdauer der Beschichtung in der jeweiligen Korrosivitätskategorie an:

K = kurze Schutzdauer (2-5 Jahre), M = mittlere Schutzdauer (5-15 Jahre), L = lange Schutzdauer (>15 Jahre)

Die Korrosivitätskategorien C 2 – C 5 beziehen sich auf die Korrosionsschutzwirkung der Beschichtung auf dem Zinküberzug: C 2 = gering, C 3 = mäßig, C 4 = stark, C 5-I = sehr stark (Industrieatmosphäre), C 5-M = sehr stark (Meeresatmosphäre)

Types of Zinc coating layers

- Each galvanizing facility has its own HDG process
- Differences in Zinc coating based on elements PB,Bi,Ni,AI,Mn
 - Composition and thickness of base material
- >Si level, >thickness, welds \rightarrow which results > Fe level
- Main question: How to deal with the different

compositions of the zinc layers?

Different Zinc coating layers with own characteristics

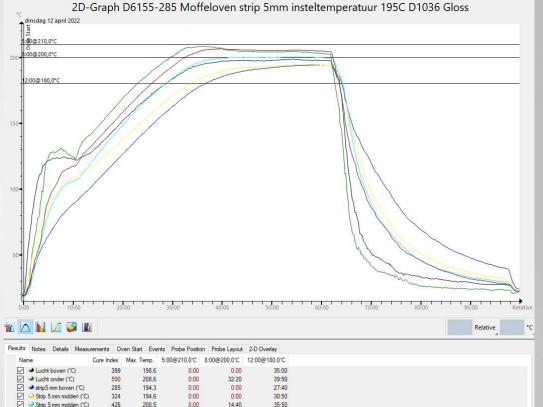
Adjusting the process to different Zinc coating layers

- Extensive testing was needed to translate the effect of different Zinc coating layers into a stable process
- No direct influence between elements present in alloy and paint adhesion
- Surface structure is of importance (which can differ per alloy)
 - very smooth shiny homogeneous versus dark Zinc coated layer
- Key is the duration of the etching process in relation to the surface structure
 - A minimum of 2 gram/m² is applied for a shiny smooth Zinc layer. For everything else, an etching degree to a minimum of 2 grams/ m² can be achieved by reduction in etch duration
 - ▶ The difference in etching can be up to 4 or 5 times longer

Alloys tested

Zn-0.7%Pb-0.004%Al Zn-0.25PB-0.1Bi-0.004%Al Zn-0.25Pb-0.1Bi-0.04%Ni-0.004%Al Zn-0.1%Bi-0.004%Al Zn-0.1Bi-0.04%Ni-0.004%Al Magnelis Zm 250 Zm310 Sendzimir Delta galvanized in Zn-0.25PB-0.1Bi-0.004%Al

Determining duration of etching process


- Ideal times cannot be determined in general, they depend on temperature, spraying or dipping, etc.
- Difference: With dull material the reaction starts immediately and with shiny material the reaction starts very slowly
- The etch step before applying the conversion layer is essential in managing the full process
- All other process and rinse baths must be clean (cleaner than with traditional chromium(VI))

After pretreatment

Optimizing the curing process of powdercoatings

- Main use is GSB accredited powders (normal and low bake) from renown suppliers
 - ► Right properties, constant quality → important for a stable process
- Curing oven process adjusted based on thickness of material
 - Lower temperature between batches

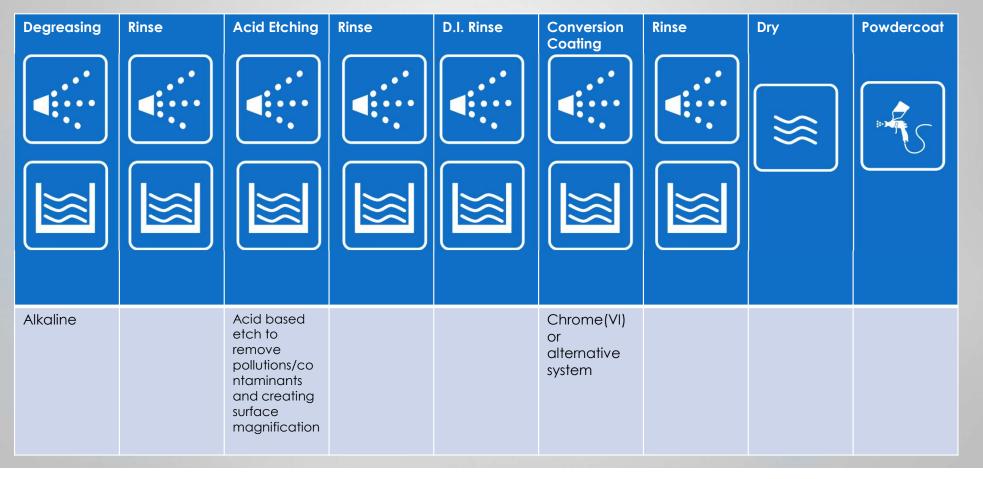
559

Strip 5 mm onder (°C)

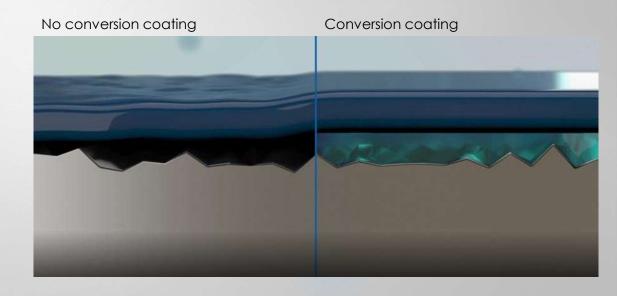
206.6

0.00

29:50


37:50

Salt Spray test results NSS 740 hours



The chemical pretreatment process for HDG

Conversion coating

- Sets in the crystalline structure of the Zinc layer
- Creates paint adhesion, corrosion protection and bare metal protection properties (passivation)

AD Chemicals

AD Chemicals

Developing a high end Chromium(VI) alternative

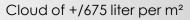
Journey of more than 7 years

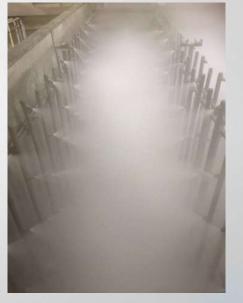
Property	Chrome(VI)	Chrome(III)	Titanium, Zirkonium	Silane	Iron phosphating	Zinc phosphating
Stable process	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Conversion coating	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Paint adhesion	\checkmark	\checkmark	√(sensitive)	$\sqrt{(sensitive)}$	Poor	Poor
Corrosion protection	\checkmark	√/Poor	Poor	Poor	Low quality	Poor
Passivation (bare corrosion protection)	\checkmark	√/X	Х	Х	Х	X
Meets GSB standard	\checkmark	\checkmark	Х	Х	Х	Х
Meets QualiSteelCoat standard	\checkmark	۸	Х	Х	Х	Х
Multi-metal	\checkmark	\checkmark	\checkmark	$\sqrt{(sensitive)}$	Low quality	Low quality

Chrome(VI) versus PreCoat Z31

Passivation properties equivalent to Chromium(VI)

The quality of Chromium(VI) without the toxic properties


Property	Chrome(VI)	Chrome(III) PreCoat Z31					
Economic viability		++					
SHEQ		++					
		A CONTRACT OF A					
Corrosion protection and paint adhesion	++	++					
Multi-metal application	+/-	++					
Stable process	++	++					
Meets quality standards	GSB, Qualisteelcoat	GSB, Qualisteelcoat					
Corrosion classes	High C3/C4/C5	High C3/C4/C5					



Testing on the lab and production environment

- Optimizing process parameters
- From 95% tot 99,9% quality
- Immersion versus spray
 - Conical spraying nozzles
- Speed of pretreatment line
- How to handle different Zinc coating layers

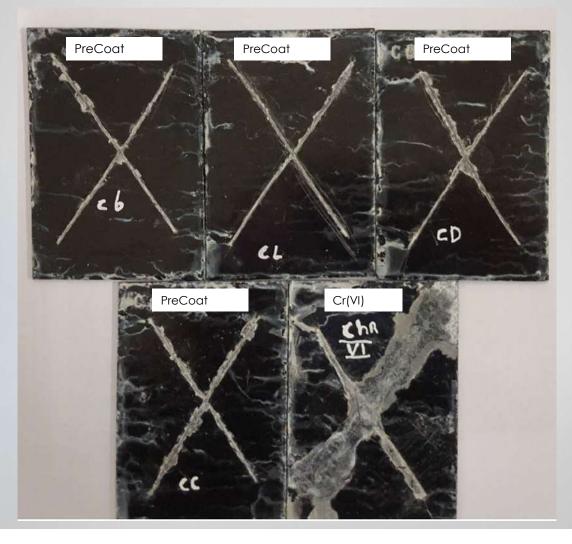
Spray Nozzle

Chemical pretreatment for HDG (1/2)

- Degreasing
 - Alkaline based, control based on pH (buffer technique).
 - The used detergent is selected based on surfactants which absorb grease but also enable a good rinsing in subsequent steps.
 - The degreaser may also not have a negative effect on the passivity of the substrate which would result in problems during etching
- Etching
 - Strong acidic environment where a mixture of acids has been chosen which ensures a good absorption of alloying elements while also penetrating the passivity of the zinc layer (etching).
 - Each different Zinc alloy needs a different treatment time
 - > The etching bath is replenished when a certain Zinc level has been reached.

Chemical pretreatment for HDG (2/2)

- Conversion coating
 - The unique chrome(III) based formulation of the PreCoat Z31 has an enormous tolerance built in, which ensures a solid process operation
 - Independent on the zinc alloy composition.
 - Monitoring build-up of alloy elements in conversion coating bath is important to prevent saturation of the bath
- Powder coating process
 - Optimization of curing process
 - Speed and temperature


Quality labels

C5 corrosion class, meets GSB and QualiSteelCoat standards

AD Chemicals

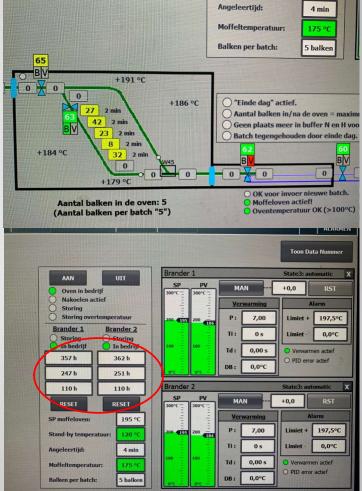
Test results after 3000 hours NSS

Phase 2: Making the process future ready

AD Chemicals

Vision of WeCoat on the future

- ► EU directive, climate goals 2030
- Sustainable business
- Save on
 - Energy & gas
 - Chemistry
 - Water
 - Maintenance

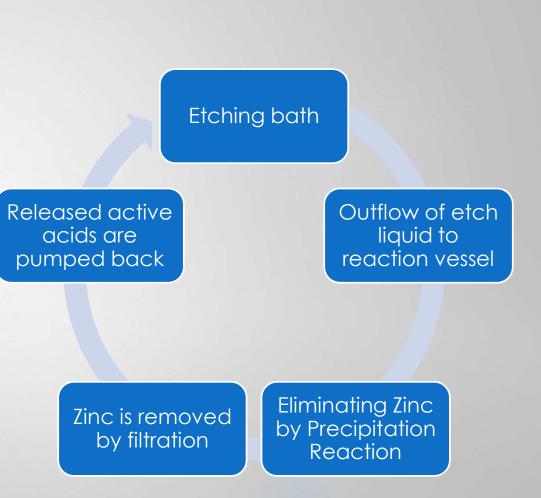

Wecoat

Lowering the temperature of the degreasing zone

- Degreasing bath 60 °C
- Objective together with AD: Decrease temperature degreasing solution, especially in the spray installation where the liquid cools off quickly during spraying and there is a lot of evaporation of water.
- Result: Temperature of a degreasing bath reduced to 35 °C for two months, which saves 30% on energy consumption for the evaporation energy alone.
- In total about 60% savings on energy and 30% on water consumption have been realized

Optimzing the powder curing process

- from continuous standard 190 degrees °C to batch
 - intelligent (integrated in the track control)
- when entering and exiting beams, we send the temperature to 120 °C and the fans go to approx. 10%
- Result: temperature remains in oven and new material can directly enter the curing oven without going in the electrical oven first while the previous batch is curing.
 - Energy saving in electric oven: 100% (turned off)
 - Energy saving regular curing oven (gas): 30%



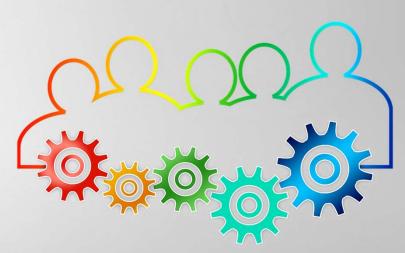
Optimizing the etching bath

- Because the Zinc is etched, Zinc quickly enters the etching bath.
- Etching bath should be with a maximum of 5 grams per liter of Zinc
- Contaminated etch solution (acid) needed to go through the waste water treatment and etching solution needed to be replenished at a high rate
- Together with AD a system for regeneration of etching solution has been developed, saving water and chemicals
 - An installation separates the Zinc from the acid in a closed loop system with etching bath
- Result: saving on water, less limescale and additional savings on caustic soda needed for waste water treatment process

Recycling of etching bath

- Investment needed in equipment to adjust process
- Chemical consumption similar to regular process
- 80% less waste water treatment costs
- 20-100K savings for average Duplex coat process
- Next step: Can zinc residue be filtered be of use to other company? (circular economy)

AD Chemicals


Degreasing at lower temperature

- AD has developed a completely new degreasing solution that can be applied at 30-35 °C.
- Traditional degreasing agents have their degreasing effect at temperatures > 50 °C.
- This new setting provides energy savings up to 60%.
- Improved working conditions: exposure due to evaporative loss is drastically reduced, which saves on water use, but also in the preservation of the building and surrounding equipment.
- PH level of the degreasing also changed. The newly developed cleaner has a neutral design, which saves on the costs for neutralization in the wastewater process
- Another benefit is that it reduces the degree of contamination in the bath.

Conclusion

- Together, WeCoat and AD have succeeded in realizing a range of improvements through innovation and joint expertise, which has led to the following summary of savings:
- Replacement of Chromium(VI)
- Savings in
 - Waste water treatment
 - Process water
 - Chemical consumption
 - Energy & gas
 - Maintenance equipment and premises

Let us keep improving every step in the process to create a sustainable future for the galvanizing world now and tomorrow!

AD, Chr

References

